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A b s t r a c t .  A gene ra l  p r o c e d u r e  is desc r ibed  
which enables the calculation of so-called 'magic' 
s t r a in  tensors ,  i.e. s y m m e t r i c  t enso r s  which 
t ransform a specified space lattice into itself. Nu- 
merical  examples  for cubic lattices are given. 

I n t r o d u c t i o n .  The lattice constants  of a space 
latt ice may be changed by the application of a ho- 
mogeneous strain,  conveniently described by a 
symmetr ic  s t ra in  tensor.  This  tensor  could be 
such tha t  the s t ra ined lattice is indist inguishable 
from the uns t ra ined  lattice, apar t  from a rota- 
tion. Following Boyer (1989), we will call such a 
tensor 'magic',  and present  a method to find such 
tensors by s t ra ightforward calculation. 

M e t h o d  o f  c a l c u l a t i o n .  Consider the space lat- 
tices ahkl-- hal  + ka2 + la3 and bhkl = hbl  + kb2 + 
kb3, with h,k,l  integers,  and the unit-cell vectors 
al ,...,b3 defined by their  components alx,...,b3z in 
some Car tes ian  frame of reference X Y Z .  A 3 × 3 
tensor T t ransforms the a lattice into the b lattice 
i fTA =B,  or T = B A -1, where A ij = aji and B ij = b j, 
( i , j =  1,2,3; x,y,z replaced by 1,2,3, respectively). 

In general ,  T will be not symmetric,  but, ac- 
cording to the polar-decomposition theorem (e.g. 
Leigh, 1968), T can be wri t ten as the product of an 
orthogonal  tensor Q and a positive-definite ten- 
sor U, i.e. T = Q U .  We can then write 

UA = RB (1) 

with R - Q-l ,  expressing that  a symmetr ic  tensor 
U can be found tha t  t ransforms the a lattice into 
the b lattice, provided b is rotated into the proper 
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orientation with respect to a. U and R can be 
found from 

U =  (TT) 1/2 (2) 

R = U T  -1 . (3) 

If the matr ices A and B are constructed from 
different (primitive) unit  cells of the same lattice, 
U will be a magic tensor for tha t  lattice. 

The t r ea tment  can be extended to more than  
three dimensions, as can the notion of magic ten- 
SOFS. 

P r a c t i c a l  e x e c u t i o n .  In order  to obta in  p1/2 
from P = if'T, P must  be diagonalized, 

P '  = S -1PS, (4) 

involving the ca lcula t ion  of the d iagonal  ele- 
ments Pi of P ' ,  which are the (positive) roots of a 
cubic equation (see, e.g., Internat ional  Tables for 
X-ray  Crystal lography,  1959). pl/2 follows from 

pl/2 = S(p , ) I /2s-1 ,  (5) 

where (p,)l/2 is obtained from P '  by replacing Pi 
by (pi) 1/2. 

The significance of U becomes apparen t  by di- 
agona l iza t ion :  the  s t r a i n  may be v iewed  as  
equivalent  to different expansions in three  mu- 
tually perpendicular  directions. These principal 
directions are given by the eigenvectors (which 
are the column vectors of S), the expansions by 
the e i g e n v a l u e s  u i (=Pi  1/2) of U. Obv ious ly ,  
UlU2U3:l .  The orthogonal tensor R describes a 
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rotat ion through an angle y about an axis with di- ly obvious, t lowever,  it is easily verified tha t  U is 
rection cosines li, which can be calculated from a magic tensor of the  simple cubic lattice. 

cos y =  ½[Tr(R) - 1] 

Ii = (-Rik + Rkj)/2 sin y 

(6)  Example 2 

(7) 

with i,],k being a cyclic permutat ion of 1,2,3. If 
y =  180 ° the li must  be calculated from 

li = +[½(1 + Rii)] 1/2 (7') 

where the sign should be chosen to comply with 
Rij = 21iIj, i ~ j .  

R e s u l t s .  Three examples  are given to i l lustrate  
the method. Only cubic lattices (simple, as well as 
face-centered) are considered, in order to facili- 
ta te  in terpreta t ion.  The conventional lattice con- 
s tan t  is taken as the unit  of length. Unfortunate-  
ly, the connection with in tegra l  number s  (e.g. 
1.414214-21/2)  is obscured by machine calcula- 
t ions.  W h e n e v e r  f igures  in dec ima l  no t a t i on  
could be identified as resul t ing from simple alge- 
braic operat ions on integral  numbers ,  they have 
been wri t ten  so. Symbols r, s and t are short for 
21/2 , 61/2 and 411/2, respectively. 

E x a m p l e  1 

1 0 0  l l 0  

A -  0 1 0  B =  0 1 1  

0 0 1  0 0 1  

i.e. a s imple cubic lattice. Since T = B A  -1, T - B ,  
and the e igenvalues  of P are the roots of the cubic 
equat ion 

p3 _ 5p2 + 6p - 1 -- 0, 

3 .246980,1 .554958and0.198062,  respectively. 
From this, S , U  and R may becalculated:  

0.328 0.737 -0.591 

S =  0.737 -0 .591 -0 .328  

0.591 0.328 0.737 

U =  

0 .871119  0 .483435 -0 .086268  

0 .483435 1.268286 0.397167 

- 0 . 0 8 6 2 6 8  0 .397167 1.354554 

0 . 8 7 1 - 0 . 3 8 8  0.301 

R =  0.483 0 . 7 8 5 - 0 . 3 8 8  

-0 .086  0.483 0.871 

Since none of the eigenvalues of U (1.802, 1.247, 
0.445) equals  1, and nei ther  the rotation axis nor 
one of the eigenvectors of U is along a low-index 
direction, the significance of U is not immediate-  

1 0 1  

A =  1 0 0  

0 1 1  

0 1 1 ]  1 0 l + r  -1 

B = R '  0 1 O ] = r  -1 1 0 1 - r  -1 

-1 0 - 1  0 2 1 

i.e. a simple cubic lattice. R '  is a 90 ° c.c.w, rota- 
tion about [ T 10 I. U is calculated to be 

2 s + 3  -s  - 2 s + 3  
1 

U = - -s  2s s 
6 

- 2 s + 3  s 2 s + 3  

with eigenvalues ~(s+r) ,  ½(s - r), 1. The th i rd  
e igenvector  (corresponding to the uni t  e igen-  
value) is in the [101] direction; the angle between 
the second eigenvector and the [010] direction is 
a, tan 2a = r. The effect of U is a r e a r r a n g e m e n t  of 
lattice points in (101) planes, resul t ing  in a c.w. 
rotation of the rec tangular  grid through an angle 
fl, tan f l=r .  This is apparent  from R R '  r a t h e r  
than from R: 

2 s + 3 r + 6  2 s - 3 r + 6  - 4 s + 6  
1 

R =  - - r  2 s - 3 r s  2s+  3rs 2s 
24 

- 2 s + 3 r + 6 - 2 s - 3 r + 6  4 s + 6  

Example  3 

1/'2 112 0 112 l 0 

A =  0 y2 1/2 B =  0 1/2 0 

1/2 0 1/2 1/2 1/2 1 

i.e. a f.c.c, lattice. U can be character ized by its 
eigenvalues,  

' - , u 3 = r ,  ul,2 = ~-(7 + t) 1/2 

and its principal directions, which are in (for ul 
and u2) and perpendicular  (for u3) to (011 ) planes. 
The u2 direction is inclined to the [011] direction 
of close-packed rows by an angle a, tan a = 1/8r(t 
- 3). As is apparent  from the value of u3, and the 
corresponding principal direct ion,  (011) p lanes  
are t ransformed into (100) planes. The angle bet- 
ween the 'old' and 'new' directions of close-packed 
rows isfl (or 90 °- f l ) ,  cosf l=  (1 + Ul U2)/(Ul + U2). 

C o n c l u d i n g  r e m a r k s .  The examples  chosen il- 
lus t ra te  that  the expansions ui must  deviate sig- 
n i f icant ly  f rom l, in order  to produce  m a g i c  
'strains' .  Accordingly, if the lattice points are oc- 
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cupied by a t om s  of one kind,  large a tomic shifts  
a r e  involved,  p r e s u m a b l y  incorpora t ing  high en- 
e rgy  ba r r i e r s .  In favorable  cases,  however ,  the  
b a r r i e r  he igh t  m a y  be of the order  of k T  at  the 
me l t i ng  point,  as  has  been demons t r a t ed  recent ly  
(Boyer,  1989). If so, the tensors  could be of practi-  
cal use for the  descr ip t ion  of a tomic  r ea r range-  
m e n t s  in smal l  c lus te r s  nea r  mel t ing.  
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