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Abstract. A general procedure is described
which enables the calculation of so-called 'magic’
strain tensors, i.e. symmetric tensors which
transform a specified space lattice into itself. Nu-
merical examples for cubic lattices are given.

Introduction. The lattice constants of a space
lattice may be changed by the application of a ho-
mogeneous strain, conveniently described by a
symmetric strain tensor. This tensor could be
such that the strained lattice is indistinguishable
from the unstrained lattice, apart from a rota-
tion. Following Boyer (1989), we will call such a
tensor ‘'magic', and present a method to find such
tensors by straightforward calculation.

Method of calculation. Consider the space lat-
tices app;=ha; +kag+lag and bpy;=hby+ kbo+
kbg, with h,k,[l integers, and the unit-cell vectors
ay,...,bs defined by their components ajy,...,b3; in
some Cartesian frame of reference XYZ. A 3X3
tensor T transforms the a lattice into the b lattice
if TA=B, or T=BA™!, where A;;=aj; and B;;=b),
({,j=1,2,3; x,y,z replaced by 1,2,3, respectively).

In general, T will be not symmetrie, but, ac-
cording to the polar-decomposition theorem (e.g.
Leigh,1968), T can be written as the product of an
orthogonal tensor Q and a positive-definite ten-
sor U, i.e. T=QU. We can then write

UA=RB (1)

with R=Q™!, expressing that a symmetric tensor
U can be found that transforms the a lattice into
the b lattice, provided b is rotated into the proper
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orientation with respect to a. U and R can be
found from

U=(Tn2 (2)
R=UT (3)

If the matrices A and B are constructed from
different (primitive) unit cells of the same lattice,
U will be a magic tensor for that lattice.

The treatment can be extended to more than
three dimensions, as can the notion of magic ten-
sors.

Practical execution. In order to obtain pl/2
from P=TT, P must be diagonalized,

P'=S"1PS, (4)

involving the calculation of the diagonal ele-
ments p; of P', which are the (positive) roots of a
cubic equation (see, e.g., International Tables for
X-ray Crystallography, 1959). P12 follows from

Plﬂ:S(Pr)lIZS—l’ (5)

where (P")1/2 is obtained from P’ by replacing p;
by (p;)1/2.

The significance of U becomes apparent by di-
agonalization: the strain may be viewed as
equivalent to different expansions in three mu-
tually perpendicular directions. These principal
directions are given by the eigenvectors (which
are the column vectors of S), the expansions by
the eigenvalues u;(=p;1/2) of U. Obviously,
ujusuz=1. The orthogonal tensor R describes a
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rotation through an angle y about an axis with di-
rection cosines [;, which can be calculated from

cos y=3%|Tr(R) -1} (6)
li= (—Rjk + Rkj)/z siny (7

with ij.k being a cyclic permutation of 1,2,3. If
y=180° the /; must be calculated from

li=+[4(1+ R (7)
where the sign should be chosen to comply with
Rij=20l;, i=j.

Results. Three examples are given to illustrate
the method. Only cubic lattices (simple, as well as
face-centered) are considered, in order to facili-
tate interpretation. The conventional lattice con-
stant is taken as the unit of length. Unfortunate-
ly, the connection with integral numbers (e.g.
1.414214=21/2) is obscured by machine calcula-
tions. Whenever figures in decimal notation
could be identified as resulting from simple alge-
braic operations on integral numbers, they have
been written so. Symbols r, s and ¢ are short for
2172 612 and 41172, respectively.

Example 1
100 110
A=]010 B=j011
001 001

i.e. a simple cubic lattice. Since T=BA~!, T=B,
and the eigenvalues of P are the roots of the cubic
equation

p3-5p2 + 6p-1=0,
3.246980, 1.554958 and 0.198062, respectively.
From this, S, U and R may be calculated:
0.328 0.737 -0.591 ]

§=10.737 -0.591 -0.328

0.591 0.328 0.737
0.871119 0.483435 —0.086268]

U=] 0.483435 1.268286 0.397167

-0.086268 0.397167 1.354554

0.871 -0.388 0.301

0.483 0.785 -0.388
-0.086 0.483 0.871
Since none of the eigenvalues of U (1.802, 1.247,
0.445) equals 1, and neither the rotation axis nor

one of the eigenvectors of U is along a low-index
direction, the significance of U is not immediate-
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ly obvious. However, it is easily verified that U is
a magic tensor of the simple cubic lattice.

Example 2
101
A={100
011
01 1 10 1+r7!
B=R'| 01 o|l=rtl10 1=/
-1 0 -1 021

i.e. a simple cubic lattice. R’ is a 90° c.c.w. rota-
tion about [110]. U is calculated to be

2s+3 -s -2s5+3
U=- -s 2s s
-25+3 s 2s5+3

with eigenvalues L(s+r), 4(s — r), 1. The third
eigenvector (corresponding to the unit eigen-
value) is in the [101] direction; the angle between
the second eigenvector and the {010] direction is
a, tan 2a =r. The effect of U is a rearrangement of
lattice points in (101) planes, resulting in a c.w.
rotation of the rectangular grid through an angle
B, tan B=r. This is apparent from RR’ rather
than from R:

2s+3r+6 25s—3r+6 -4s+6

R= ar 25—=3rs 2s+3rs 2s
~25+3r+6 -25s—3r+6 4s+86
Example 3
12 12 0 v2 1 0
A=10 v2 12 B=]1 0 120
12 0 12 V2 12 1

i.e. a f.c.c. lattice. U can be characterized by its
eigenvalues,

ure=3(7% "2, ug=r,

and its principal directions, which are in (for u
and ug) and perpendicular (for u3) to (011) planes.
The ug direction is inclined to the [011] direction
of close-packed rows by an angle a, tan a=1/8r(¢
- 3). As is apparent from the value of ug, and the
corresponding principal direction, (011) planes
are transformed into (100) planes. The angle bet-
ween the 'old' and 'new' directions of close-packed
rows is § (or 90° - ), cos B=(1 + uyug)/(uy + usg).

Concluding remarks. The examples chosen il-
lustrate that the expansions u; must deviate sig-
nificantly from 1, in order to produce magic
'strains’. Aceordingly, if the lattice points are oc-
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cupied by atoms of one kind, large atomic shifts
are involved, presumably incorporating high en-
ergy barriers. In favorable cases, however, the
barrier height may be of the order of kT at the
melting point, as has been demonstrated recently
(Boyer, 1989). If so, the tensors could be of practi-
cal use for the description of atomic rearrange-
ments in small clusters near melting.
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